低压四个半桥驱动器

产品简述

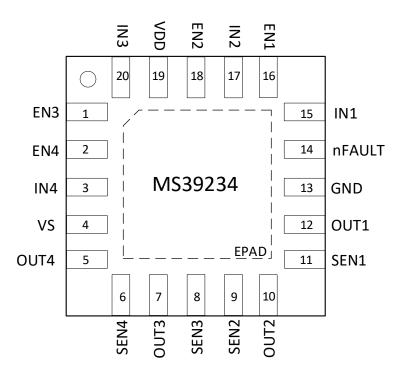
MS39234 是一款低压四个半桥驱动器。它可应用于低电压及电池供电的运动控制场合,并且内置了电荷泵来提供内部功率 NMOS 所需的栅极驱动电压。

MS39234 可以提供最高 2.8A 的峰值电流,其功率电源供电范围 从 1.8V 到 10V,模拟电源供电范围从 1.8V 到 6V。

半桥由 EN/IN 逻辑控制,并且当所有的 ENx=0V 超过 3ms 时,进入待机模式。

主要特点

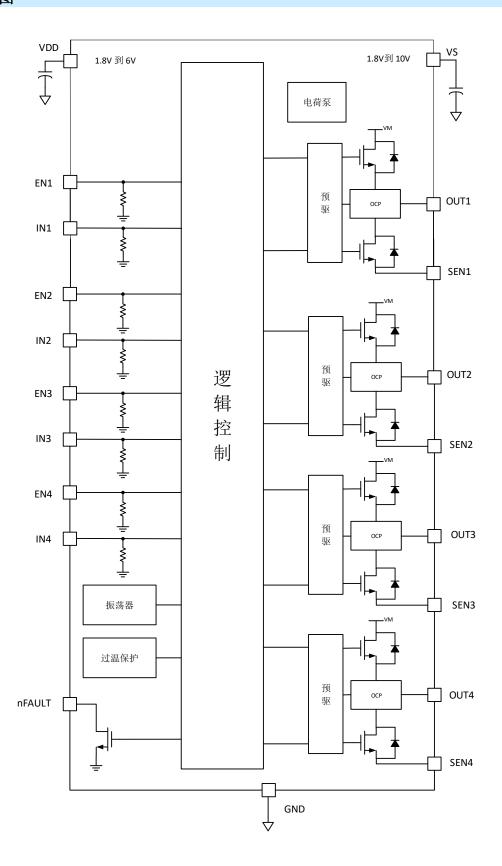
- 四个半桥驱动器,低输出导通电阻,420mΩ(HS+LS)
- 2.8A 峰值电流能力
- 功率电源供电范围: 1.8V 到 10V
- 模拟电源供电范围: 1.8V 到 6V
- 独立 EN/IN 半桥控制逻辑
- 待机模式下,功耗不超过 120nA@VS<6V
- QFN20 封装(背部散热片),3mmx3mm
- 保护功能:过流保护、短路保护、欠压保护以及过温保护


应用

- 电池供电、步进电机、直流电机
- 机器人
- 便携式医疗电子设备

产品规格分类

产品名称	封装形式	丝印名称
MS39234	QFN20	MS39234


管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	EN3	I	OUT3 使能控制
2	EN4	I	OUT4 使能控制
3	IN4	I	OUT4 驱动控制
4	VS	-	功率电源
5	OUT4	0	OUT4 输出
6	SEN4	10	OUT4 低边功率管源端,可接 SENSE 电阻
7	OUT3	0	OUT3 输出
8	SEN3	10	OUT3 低边功率管源端,可接 SENSE 电阻
9	SEN2	10	OUT2 低边功率管源端,可接 SENSE 电阻
10	OUT2	0	OUT2 输出
11	SEN1	10	OUT1 低边功率管源端,可接 SENSE 电阻
12	OUT1	0	OUT1 输出
13	GND	-	地
14	nFAULT	0	错误输出脚
15	IN1	l	OUT1 驱动控制
16	EN1	I	OUT1 使能控制
17	IN2	I	OUT2 驱动控制
18	EN2	I	OUT2 使能控制
19	VDD	-	模拟电路电源
20	IN3	I	OUT3 驱动控制
-	EPAD	-	散热片,必须接地

内部框图

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
功率电源电压	VS	-0.3 ~ 15	V
低压电源电压	VDD	-0.3 ~ 6	V
过流保护值	IOCP	3	А
工作温度范围	TJ	-40 ~ 125	°C
储存温度范围	Tstg	-40 ∼ 1 50	°C
SENX 电压		<0.6	V
逻辑输入电压	VIN	5.5	V
ESD (HBM)		±6k	V

推荐工作条件

工作电源电压范围

参数	符号	最小	标准	最大	单位	
功率电源电压范围	VS	1.8		10	V	
模拟电源电压范围	VDD	1.8		6	٧	

电气参数

VS=5V, VDD=3.3V。注意: 没有特别规定,环境温度为T_A = 25℃ ±2℃。

电流功耗

参数	符号	测试条件	最小值	典型值	最大值	单位
VS 待机电流	lvSstandby	EN1=EN2=EN3=EN4=0V 持续时间超过 3ms			0.1	μΑ
	I _{VS1}	ENx=1		140		μΑ
VS 工作电流	I _{VS2}	50kHz PWM		380		μΑ
VDD 待机电流	lvDDstandby	EN1=EN2=EN3=EN4=0V 持续时间超过 3ms			0.01	μΑ
	I _{VDD1}	ENx=1		390		μΑ
VDD 工作电流	I _{VDD2}	50kHz PWM		430		μΑ
待机检测时间	$Td_{standby}$	EN1=EN2=EN3=0V		3		ms

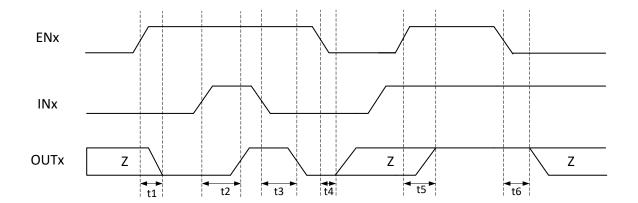
数字输入输出

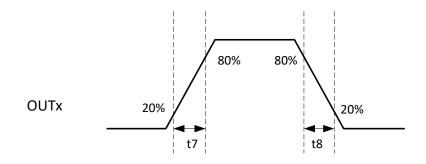
3X 1 100 / V100 LLI						
参数	符号	测试条件	最小值	典型值	最大值	单位
高电平输入	V _{in(H)}	VDD=3.3V	1.7			V
低电平输入	V _{in(L)}	VDD=3.3V			1.2	V
输入迟滞	V _{in(hys)}	VDD=3.3V		0.4		V
下拉电阻	R _{pd}			270		kΩ
PWM 频率	F _{pwm}			250		kHz

输出功率管

参数	符号	测试条件	最小值	典型值	最大值	单位
上管导通电阻	R_{dsh}	VS=5V,lout=500mA		210		mΩ
下管导通电阻	R _{dsl}	VS=5V,Iout=500mA		210		mΩ
输出关闭漏电流	lleak	ENx=0, OUTx 接 VS 或 GND	-1		1	μΑ

保护电路


参数	符号	测试条件	最小值	典型值	最大值	单位
VDD 欠压保护		VDD 上升		1.7		V
VDD 欠压保护		VDD 下降		1.6		V
过流保护	l _{ocp}			3		А
过流保护检测时间	t _{ocp_d}			2		μs
过流保护自启动关闭时间	t _{ocp_r}			2.8		ms
		温度上升		165		°C
过温保护	T _{otpl}	温度下降		137		°C
过温保护迟滞	Totphys			28		°C


时序

VS=5V, VDD=3.3V, 输出空载

符号	测试条件	最小值	最大值	单位
t1	IN=0, EN 从 0 变到 1, 输出从 Z 态变低延时		200	ns
t2	EN=1, IN 从 0 变到 1, 输出从低变高延时		200	ns
t3	EN=1, IN 从 0 变到 1,输出从高变低延时		200	ns
t4	IN=0, EN 从 1 变到 0,输出从低变 Z 态延时		200	ns
t5	IN=1, EN 从 0 变到 1,输出从 Z 态变高延时		200	ns
t6	IN=1, EN 从 1 变到 0,输出从高变 Z 态延时		200	ns
t7	输出上升沿时间		200	ns
t8	输出下降沿时间		160	ns

功能描述

MS39234 是一款低压四个半桥驱动器,可以用来驱动一个步进电机或者两个直流电机。

半桥控制逻辑

MS39234 采用 EN/IN 逻辑控制半桥。每个半桥独立控制。

其真值表如下:

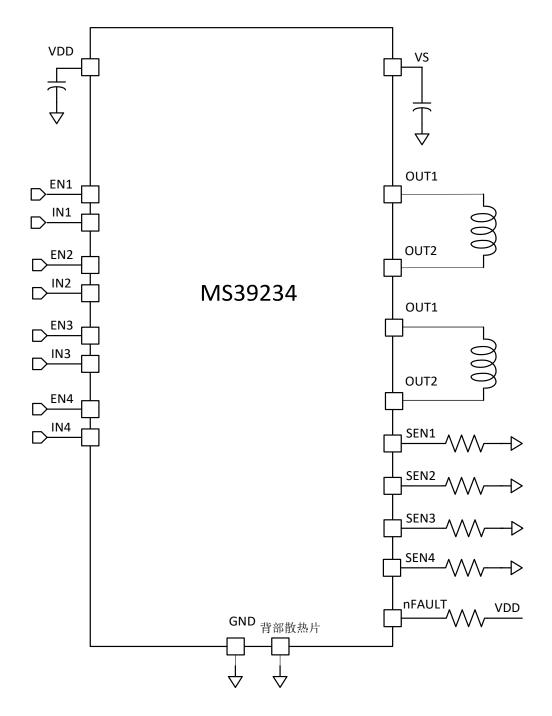
ENx	INx	OUTx	半桥状态
0	Х	Z	关闭
1	0	L	下管打开
1	1	Н	上管打开

待机模式

MS39234 提供待机模式,当 EN1=EN2=EN3=EN4=0 的时间超过 3ms 时,芯片将进入待机模式。待机模式下,芯片所有模块都会被关闭。若 ENx 中有一个脚被拉高,芯片将从待机模式进入正常工作模式。

电源供电及输入管脚

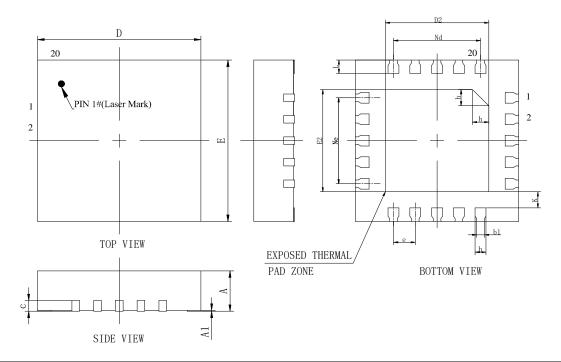
VDD 和 VS 可以不按照顺序上电或者下电。当 VDD 下电后,芯片会进入低功耗状态,此时 VS 只消耗很小的电流。如果 VS 电压在 1.8V 到 6V 之间,可以从外部将 VDD 和 VS 接一起进行供电。


保护电路

MS39234 提供完备的保护电路,包括过温保护,欠压保护,过流保护等。

MS39234 针对每个功率 MOS 做了独立的过流保护:包括对电源,对地,以及输出间短路。当触发过流保护时,芯片会关闭输出 2.8ms 左右,再重新开启,确保芯片不会因过流而损坏。

在异常状态时, nFAULT 脚会被拉低。


典型应用图

注意: MS39234 具有背部散热片,应用时必须接地。

封装外形图

QFN20 (背部带散热片)

hete CI	尺寸(毫米)				
符号	最小	典型	最大		
Α	0.80	0.85	0.90		
A1	0	0.02	0.05		
b	0.15	0.20	0.25		
b1		0.14REF			
С	0.203REF				
D	2.90	3.00	3.10		
D2	1.80	1.90	2.00		
e		0.40BSC			
Ne		1.60BSC			
Nd		1.60BSC			
E	2.90	3.00	3.10		
E2	1.80	1.90	2.00		
L	0.20	0.25	0.30		
h	0.25	0.30	0.35		
К	0.30REF				

印章与包装规范

1. 印章内容介绍

产品型号: MS39234 生产批号: XXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS39234	QFN20	4000	1	4000	8	32000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路1号高新软件园9号楼701室

http://www.relmon.com