高速、低功耗双刀双掷模拟开关

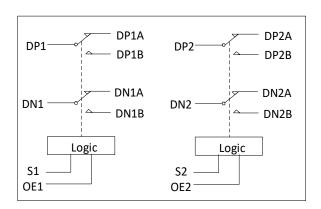
主要特点

- 3V 下导通电阻典型值为 4.5Ω
- 低工作电压: +1.8V 至 +5.5V
- 开关速度快: 开启时间: 10ns 关断时间: 22ns
- 轨对轨输入、输出工作范围
- 工业级温度范围
- QFN20 封装

应用

- 工业自动化
- 过程控制
- 运动控制
- 手持设备

产品简述


MS2534N 是一款高速、低功耗双刀双掷模拟开 关芯片,其工作电压范围是+1.8V 至+5.5V。其具有 低的导通阻抗、高的通道噪声隔离度、大带宽特 性。

主要应用范围包括: 具有 USB2.0 接口的手持设备和消费电子如手机、数码相机、笔记本电脑等。

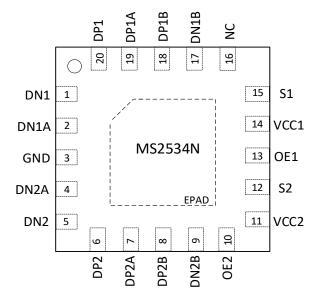
产品规格分类

产品	封装形式	丝印名称
MS2534N	QFN20	MS2534N

内部框图

功能表

OE1	S1	DP1B, DN1B	DP1A, DN1A
0	0	开启	关断
0	1	关断	开启
1	Х	关断	关断


OE2	S2	DP2B , DN2B	DP2A , DN2A
0	0	开启	关断
0	1	关断	开启
1	Х	关断	关断

長目

1. 主要特点	
2. 应用	
3. 产品简述	1
4. 产品规格分类	1
5. 内部框图	1
6. 管脚图	3
7. 管脚说明	3
8. 极限参数	4
9. 电气参数	5
10. 封装外形图	10
11. 印章与包装规范	11
12. 声明	12
13. MOS电路操作注意事项	13

管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
14	VCC1	-	通道1的电源
15	S1	I	通道1的选择输入端
13	OE1	I	通道1的使能输入端
20, 1	DP1, DN1		
19, 2	DP1A, DN1A	10	通道1数据端
18, 17	DP1B, DN1B		
11	VCC2	-	通道2的电源
12	S2	I	通道 2 的选择输入端
10	OE2	I	通道 2 的使能输入端
6, 5	DP2, DN2		
7, 4	DP2A, DN2A	Ю	通道2数据端
8, 9	DP2B, DN2B		
3	GND	-	地
16	NC	-	无连接
-	EPAD	-	接地

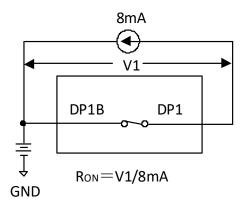
极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

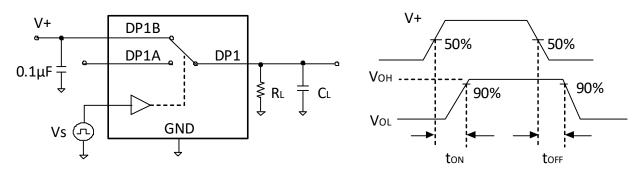
PUINT NITT O		
参数	参数范围	单位
输入、电源电压范围	-0 ~ + 6.0	V
模拟、数字电压范围	-0 ~ +6.0	
数据端最大电流	±100	mA
数据端最大峰值电流	±100	mA
工作温度范围	-40 ~ +125	°C
最大结温	+150	°C
储存温度范围	-60 ~ +150	°C
焊接温度(10s)	+260	°C
ESD(HBM)	5k	V

电气参数

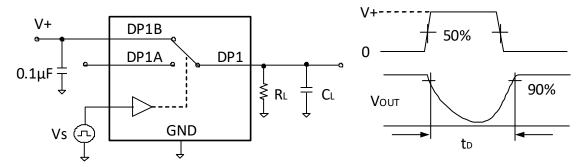
 $V+=+1.8V \ \Xi \ +5.5V, \ \ GND=0V, \ \ V_{IH}=+1.6V, \ \ V_{IL}=+0.5V, \ \ T_{A}=-40^{\circ}C \ \Xi +85^{\circ}C.$

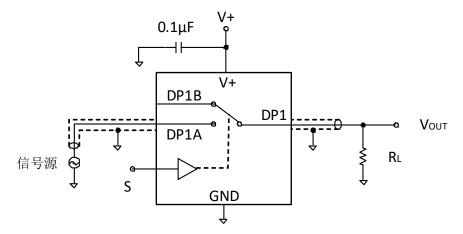

典型值在 V+ = +3.3V, T_A = +25℃, 若无特殊说明。

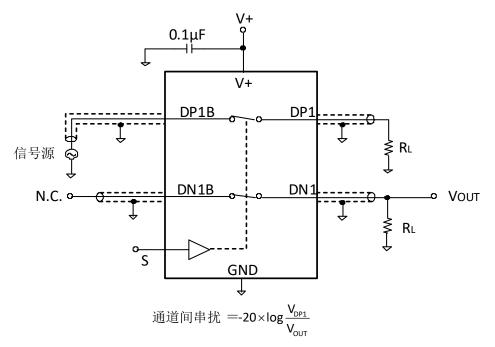
典型徂往 V+ = +3.3V, T _A = 参数	符号	测试条件	最小	典型	最大	单位	
模拟开关							
模拟输入输出电压	V _{IS}		0		V+	V	
导通电阻	Ron	测试电路 1, V+ = 3.0V, V _{IS} = 0 ~ 0.4V, I _D = 8mA		4.5	8.5	Ω	
通道间导通电阻的匹配	ΔR_{ON}	同上		0.15	0.6	Ω	
导通电阻平坦度	Rflat(on)	测试电路 1, V+ = 3.0V, V _{IS} = 0 ~ 1.0V, I _D = 8mA		1.5	2.0	Ω	
断电漏电流	loff	V+ = 0V,V _D = 0 ~ 3.6 V, V _S ,V _{OE} = 0 或 3.6 V		0.1		μΑ	
不同控制电压下的 ICC 电流增量	Ісст	V+ = 3.6V, V _S , V _{OE} = 2.6 V		1.07		μΑ	
端口断开漏电流	Idp1a(Off) Idp1b(Off)	$V+ = 3.6V,$ $V_{IS} = 3.3V / 0.3V,$ $V_{D} = 0.3V / 3.3V$		0.1		μΑ	
导通漏电流	Idp1a(on) I _{dp1b(on)}	V+ = 3.6V, V _{IS} = 3.3V / 0.3V, V _D = 3.3V/ 0.3V 或悬空		0.1		μΑ	
	数字输入						
输入高电平	V _{IH}		1.6			V	
输入低电平	VIL				0.5	V	
输入漏电流	I _{IN}	V+ = 3.0V, V _S ,V _{OE} = 0 或 V+		0.1		μΑ	

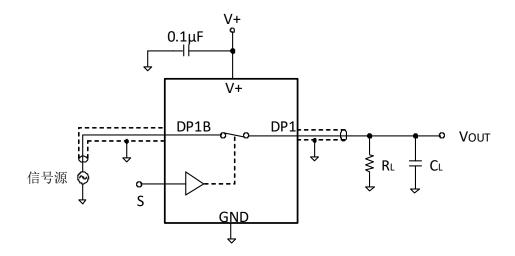


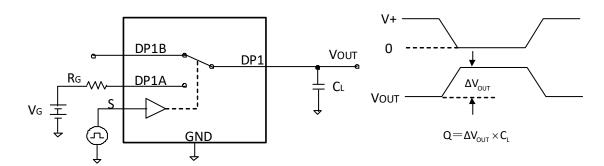
参数	符号	测试条件	最小	典型	最大	单位
动态参数						
开启时间	ton	测试电路 2, V _{IS} = 0.8V,		10		ns
关断时间	toff	$R_L = 50\Omega$, $C_L = 10pF$		22		ns
先断后通时间	t _D	测试电路 3,V _{IS} = 0.8V, R _L = 50Ω, C _L = 10pF		4		ns
传输延时	t _{PD}	R _L = 50Ω, C _L = 10pF		0.3		ns
关断隔离度	O _{ISO}	测试电路 4, 信号幅度 0dBm, R _L = 50Ω, f = 250MHz		-35		dB
通道间串扰	Xtalk	测试电路 5, 信号幅度 0dBm, R _L = 50Ω, f = 250MHz	-41			dB
-3dB 带宽	BW	测试电路 6, 信号幅度 0dBm, R _L = 50Ω, C _L = 5pF	5			MHz
通道间偏差	tskew	$R_L = 50\Omega$, $C_L = 10pF$		0.1		ns
选择端到公用 IO 端的 电荷注入	Q	测试电路 7, V _G = GND, C _L = 1.0nF, R _G = 0Ω, Q = C _L ×V _{OUT}		11		pC
功耗参数						
电源电压	V+		1.8		5.5	V
电流	I+	V+ = 3.0V, Vs , V _{OE} = 0V 或 V+		0.01		μΑ


测试电路


测试电路 1. 导通电阻

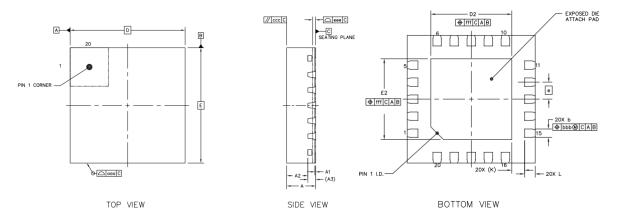

测试电路 2. 开关时间(ton, toff)


测试电路 3. 先断后通时间(t_D)


测试电路 4. 关断隔离度

测试电路 5. 通道间串扰

测试电路 6.-3dB 带宽



测试电路 7. 电荷注入(Q)

封装外形图

QFN20

by a		尺寸 (毫米)				
符号	最小	典型	最大			
А	0.7	0.75	0.8			
A1	0	0.02	0.05			
A2	-	0.55	-			
A3		0.203REF				
b	0.15	0.2	0.25			
D	3BSC					
E	3BSC					
e	0.4BSC					
D2	1.8	1.8 1.9				
E2	1.8	1.9	2			
L	0.15	0.15 0.25				
К		0.3REF				
aaa		0.1				
ссс		0.1				
eee		0.08				
bbb	0.07					
fff		0.1				

印章与包装规范

1. 印章内容介绍

MS2534N XXXXXXX

产品型号: MS2534N 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS2534N	QFN20	1000	8	8000	4	32000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路1号高新软件园9号楼701室

http://www.relmon.com