# 低压 5V 多通道电机驱动器

# 产品简述

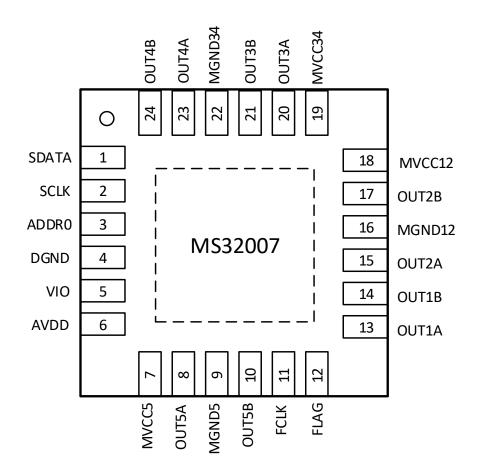
MS32007 是一款多通道电机驱动芯片,其中包含两路步进电机驱动,一路直流电机驱动;每个步进电机驱动通道的最大工作电流 1.0A;支持两相四线与四相五线步进电机。

芯片采用 I<sup>2</sup>C 的通信接口控制模式,兼容 1.8V/3.3V/5V 的标准工业接口。

# QFN24

# 主要特点

- 双路步进电机驱动,整步进或 1/2 步进,最大工作电流 1A
- I<sup>2</sup>C 串行总线通信控制电机
- 指令缓存功能,电机按照当前指令转动时预存下一条指令
- 集成一个直流电机驱动,最大工作电流 1.1A
- 内置系统时钟,省去外部时钟需求
- QFN24 封装(背部散热片)


## 应用

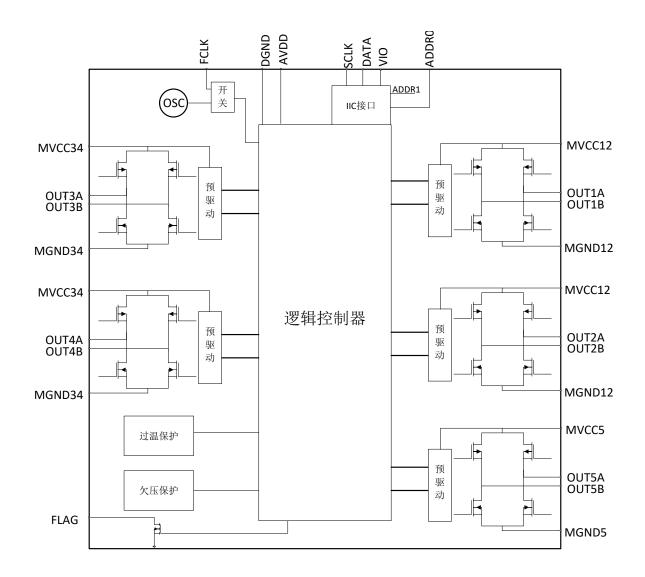
- 机器人,精密工业设备
- 摇头机
- 监控摄像机
- 云台

# 产品规格分类

| 产品      | 封装形式  | 丝印名称    |
|---------|-------|---------|
| MS32007 | QFN24 | MS32007 |

# 管脚图






# 管脚说明

| 管脚编号 | 管脚名称   | 管脚属性 | 管脚描述                   |
|------|--------|------|------------------------|
| 1    | SDATA  | 10   | I <sup>2</sup> C 总线数据线 |
| 2    | SCLK   | I    | I <sup>2</sup> C 总线时钟线 |
| 3    | ADDR0  | I    | I <sup>2</sup> C 地址 0  |
| 4    | DGND   | -    | 地                      |
| 5    | VIO    | -    | I <sup>2</sup> C 接口电源  |
| 6    | AVDD   | -    | 5V 逻辑电源                |
| 7    | MVCC5  | -    | 5V 直流电机通道功率电源          |
| 8    | OUT5A  | 0    | 直流电机通道输出               |
| 9    | MGND5  | -    | 直流电机通道功率地              |
| 10   | OUT5B  | 0    | 直流电机通道输出               |
| 11   | FCLK   | I    | 24MHz 参考时钟输入,可以使用内部时钟  |
| 12   | FLAG   | 0    | FLAG 指示输出              |
| 13   | OUT1A  | 0    | 步进电机通道 1 输出            |
| 14   | OUT1B  | 0    | 步进电机通道 1 输出            |
| 15   | OUT2A  | 0    | 步进电机通道 2 输出            |
| 16   | MGND12 | -    | 步进电机通道 1,2 功率地         |
| 17   | OUT2B  | 0    | 步进电机通道 2 输出            |
| 18   | MVCC12 | -    | 5V 步进电机通道 1,2 功率电源     |
| 19   | MVCC34 | -    | 5V 步进电机通道 3,4 功率电源     |
| 20   | OUT3A  | 0    | 步进电机通道 3 输出            |
| 21   | OUT3B  | 0    | 步进电机通道 3 输出            |
| 22   | MGND34 | -    | 步进电机通道 3,4 功率地         |
| 23   | OUT4A  | 0    | 步进电机通道 4 输出            |
| 24   | OUT4B  | 0    | 步进电机通道 4 输出            |



# 内部框图





# 极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

| 参数             | 符号                                  | 额定值                            | 单位   |
|----------------|-------------------------------------|--------------------------------|------|
|                | V <sub>MVCC12</sub>                 |                                |      |
| 马达控制电源电压       | V <sub>MVCC34</sub>                 | -0.3 ~ <b>+</b> 6              | V    |
|                | V <sub>MVCC5</sub>                  |                                |      |
| 接口,逻辑部分电源电压    | V <sub>AVDD</sub> , V <sub>IO</sub> | -0.3 ~ <b>+</b> 6              | V    |
| 数字部分输入电压       | V <sub>IN</sub>                     | -0.3 ~ (V <sub>IO</sub> + 0.3) | V    |
| FLAG 输出电压      | V <sub>FLAG</sub>                   | -0.3 ~ <b>+</b> 6              | V    |
| 步进电机驱动 H 桥驱动电流 | I <sub>M1(1234)</sub>               | ± 1.0                          | A/ch |
| 直流电机驱动 H 桥驱动电流 | lм1(5)                              | ± 1.1                          | A/ch |
| 步进电机驱动 H 桥峰值电流 | I <sub>M1(pluse1234)</sub>          | ± 1.2                          | A/ch |
| 直流电机驱动 H 桥峰值电流 | I <sub>M2(pluse5)</sub>             | ± 1.2                          | A/ch |
| 工作环境温度         | T <sub>A</sub>                      | -40 ~ +105                     | °C   |
| 存储温度           | T <sub>STG</sub>                    | -65 ~ +150                     | °C   |
| ESD (HBM)      | V <sub>ESD</sub>                    | > ± 3k                         | V    |

## 热阻

| 符号                                      | 参数值   | 单位   |
|-----------------------------------------|-------|------|
| R <sub>θJA</sub> , T <sub>A</sub> =25°C | 41.13 | °C/W |
| R <sub>θJC</sub> , T <sub>A</sub> =25°C | 21.48 | °C/W |
| R <sub>θJВ</sub> , T <sub>А</sub> =25°C | 17.26 | °C/W |
| Флт                                     | 0.71  | °C/W |
| Фјв                                     | 16.42 | °C/W |

# 电气参数

V<sub>MVCC12</sub>=V<sub>MVCC34</sub>=V<sub>MVCC5</sub>=5V, V<sub>AVDD</sub>=5V, V<sub>IO</sub>=3.3V。注意:没有特别规定,环境温度为T<sub>A</sub> = 25℃ ±2℃。

## 电源工作范围

| 参数           | 符号                | 测试条件 | 最小值 | 典型值 | 最大值 | 单位 |
|--------------|-------------------|------|-----|-----|-----|----|
| MVCCX 驱动电源范围 | V <sub>MVCC</sub> |      | 1   | 5   | 5.5 | ٧  |
| AVDD 逻辑电源范围  | V <sub>AVDD</sub> |      | 2.5 | 5   | 5.5 | ٧  |
| VIO 接口电源范围   | V <sub>IO</sub>   |      | 1.6 |     | 5.0 | V  |

## 电流功耗

| 参数            | 符号                     | 测试条件          | 最小值 | 典型值 | 最大值 | 单位 |
|---------------|------------------------|---------------|-----|-----|-----|----|
| 待机时电源 AVDD 电流 | I <sub>DDstandby</sub> | AVDD,CMD_RS=0 |     | 1.6 |     | mA |

# 数字输入输出

| 参数          | 符号                 | 测试 条件                 | 最小值                 | 典型值  | 最大值                  | 单位  |
|-------------|--------------------|-----------------------|---------------------|------|----------------------|-----|
| 高电平输入电压     | V <sub>IN(H)</sub> | SCLK,SDATA,ADDR0,FCLK | 0.7×V <sub>IO</sub> |      | V <sub>IO</sub> +0.3 | V   |
| 低电平输入电压     | V <sub>IN(L)</sub> | SCLK,SDATA,ADDR0,FCLK | -0.3                |      | 0.31×V <sub>IO</sub> | ٧   |
| FCLK 时钟输入频率 | f <sub>CLK</sub>   | 外部时钟输入范围              | 4                   |      | 40                   | MHz |
| OSC 内部时钟频率  | fosc               | 内部振荡器的时钟              | 23.5                | 24.5 | 25.5                 | MHz |
| FLAG 饱和电压   | V <sub>FLAG</sub>  | FLAG 为低,电流 5mA 时      |                     |      | 200                  | mV  |

# 步进电机驱动(通道 1,2,3,4)(云台 XY 轴转向控制)

| 参数               | 符号                    | 测试 条件                     | 最小值 | 典型值 | 最大值 | 单位 |
|------------------|-----------------------|---------------------------|-----|-----|-----|----|
| H 桥 <b>导通</b> 阻抗 | R <sub>ON1234</sub>   | louт= <b>500mA</b> ,上桥+下桥 |     | 1.1 |     | Ω  |
| 输出漏电流            | I <sub>LEAK1234</sub> |                           |     |     | 0.8 | μΑ |

# 直流电机驱动 (通道 5) (IR-CUT)

| 参数       | 符号                 | 测试 条件                      | 最小值 | 典型值 | 最大值 | 单位 |
|----------|--------------------|----------------------------|-----|-----|-----|----|
| H 桥 导通阻抗 | R <sub>ON5</sub>   | louтs= <b>500mA</b> ,上桥+下桥 |     | 0.9 |     | Ω  |
| 输出漏电流    | I <sub>LEAK5</sub> |                            |     |     | 0.7 | μΑ |

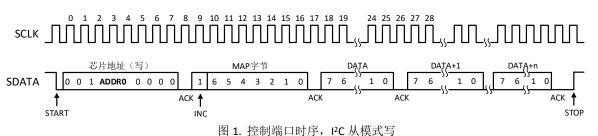


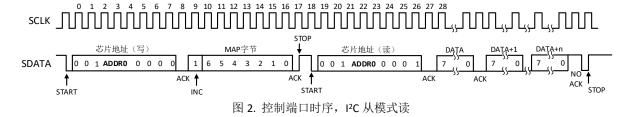
# 过温保护

| 参数     | 符号               | 测试条件    | 最小值 | 典型值 | 最大值 | 单位 |
|--------|------------------|---------|-----|-----|-----|----|
| 过温保护温度 | $T_{TSD}$        | 温度上升关断点 |     | 155 |     | °C |
| 过温保护迟滞 | $\Delta T_{TSD}$ | 迟滞窗口    |     | 24  |     | °C |

# 电源电压监测电路

| 参数     | 符号                  | 测试条件      | 最小值 | 典型值 | 最大值 | 单位 |
|--------|---------------------|-----------|-----|-----|-----|----|
| 欠压保护电压 | $V_{RSTON}$         | 电压下降,输出关断 |     | 2.3 |     | V  |
| 欠压保护迟滞 | V <sub>RSTHYS</sub> |           |     | 0.2 |     | V  |


# 功能描述


MS32007 总共集成了两路步进电机驱动器与一路直流电机驱动器,通过 I<sup>2</sup>C 总线去控制电机的转动。步进电机控制器可以选择整步进或者 1/2 步进的步进模式,系统上一般用来做小云台 X、Y 轴的运动控制。直流电机也是通过 I<sup>2</sup>C 设置内部的寄存器,来控制电机的正转、反转、刹车、自由旋转这四个状态,系统上可以用来做 IR-cut 的控制。

#### 1. I2C 总线接口

芯片接口为 I<sup>2</sup>C,SDATA 是一个双向数据线,SCLK 是时钟输入。图 1 和图 2 分别显示了一个写和一个读周期的信号时序。当时钟信号为高电平时,SDATA 有一个下降沿作为起始条件;时钟信号为高电平时,SDATA 的上升沿作为结束条件。SDATA 的其它所有变化都发生在时钟信号为低电平时。

MS32007 的通信中,在起始条件后,由 7 位芯片地址和 1 位读/写位(高为读,低为写)组成的第一个字节(ADDR)被发送到 MS32007。7 位地址的前 3 位是固定的 001,末 3 位为固定的 000,第 4 位地址由 ADDRO 管脚控制。第 8 位是读/写位。如果是一个【写】操作,接下来的一个字节包含寄存器地址指针(MAP),用来选择所要读或写的寄存器。如果是个【读】操作,将输出 MAP 所指的寄存器的内容。MAP 自动递增,寄存器的数据将会依次出现。每一个字节由一个应答位(ACK)分隔开。在每次输入字节读取后 MS32007 输出应答位,每一个传输的字节后微控制器发送应答位给 MS32007。





注意读操作时不能设置 MAP,因此需要一个终止的写操作作为一个头码。如图 2 所示,在作为 MAP 的应答后发送一个停止条件,则写操作终止。



#### 2. 寄存器说明

寄存器地址指针(MAP)。MAP 有 8 位字长,它包括读和写的控制端口地址,另外还有一个自增控制位(MAP[7])。MAP[6:0]组成了可以读和写的地址,第 7 位(INC)决定在每个控制端口完成后 MAP[6:0] 是否自增。如果 INC=0,MAP[6:0]在每个控制端口读或写完成后不会自增,如果 INC=1,MAP[6:0]在每个控制端口读或写完成后自增。MAP 位如图 1 或 2 所示。

寄存器表如下

| ADDR | D7        | D6             | D5      | D4      | D3              | D2        | D1          | D0          |  |
|------|-----------|----------------|---------|---------|-----------------|-----------|-------------|-------------|--|
| 地址位  |           | 可写数据位[7:0]     |         |         |                 |           |             |             |  |
| 0H   | Motor_Sel | MOTIONPLS      | 0       | 0       | 0               | ASTOP     | BSTOP       | CMD_RS      |  |
| 1H   |           |                |         | Ach_Cy  | cle[7:0]        |           |             |             |  |
| 2H   | ModeA     | 0              |         |         | Ach_Cyc         | :le[13:8] |             |             |  |
| 3H   |           |                |         | Ach_Pu  | lse[7:0]        |           |             |             |  |
| 4H   | EnA       | RtA            | 0       | 0       | 0               | A         | ch_Pulse[10 | D:8]        |  |
| 5H   |           |                |         | Bch_Cy  | cle[7:0]        |           |             |             |  |
| 6H   | ModeB     | 0              |         |         | Bch_Cyc         | :le[13:8] |             |             |  |
| 7H   |           |                |         | Bch_Pu  | lse[7:0]        |           |             |             |  |
| 8H   | EnB       | RtB            | 0       | 0       | 0               | В         | ch_Pulse[10 | D:8]        |  |
| 9H   | ASTART    | BSTART         | 0       | 0       | DC_C            | t[1:0]    | PWM_        | Chop[1:0]   |  |
| АН   | PWM_io    |                |         | 19      | MW_Duty[6:      | 0]        |             |             |  |
| FH   | 0         | 0              | 0       | 0       | 0               | 0         | 0           | useInnerOSC |  |
| 地址位  |           |                |         | 只读数捷    | 居位[7:0]         |           |             |             |  |
| ВН   | Ach_MS    | A_BUSY         | OTP_err | AWORK   | Ach_Steps[11:8] |           |             |             |  |
| СН   |           | Ach_Steps[7:0] |         |         |                 |           |             |             |  |
| DH   | Bch_MS    | B_BUSY         | OTP_err | BWORK   | Bch_Steps[11:8] |           |             |             |  |
| EH   |           |                |         | Bch_Ste | eps[7:0]        |           |             |             |  |

- 注: 1. 寄存器表格中, A\_ 与 B\_ 分别对应 Ach 与 Bch。
- 2. Ach 被定义为步进电机通道 1ch 和 2ch,Bch 被定义为步进电机通道 3ch 和 4ch。
- 3. 在复位之后(包括上电复位和通过  $CMD_RS$  寄存器复位),所有寄存器都被置为初始态,默认值均为 0。
- 4. 对于 Mode、Cycle、En 和 Rt 寄存器,写入的数据在 Pulse 寄存器被启用之前有效,在 Pulse 寄存器 所在地址(的数据)写入完成之后确定。Mode、Cycle、En、Rt 和 Pulse 寄存器有缓存寄存器,除这些 之外的寄存器组则没有。
- 5. 写入 STOP、PWM\_Chop、DC\_Ct 和 PWM\_Duty 寄存器的数据,在其所属地址(的数据)写入完成后确定。



#### **2.1 CMD RS**

CMD\_RS 用于重置寄存器。

| D0 | 状态      |
|----|---------|
| 0  | 重置(初始态) |
| 1  | 非重置态    |

注: 1. 置'0'时,所有寄存器被置为初始态。在开始配置其他寄存器前需要首先将此位设置为1。

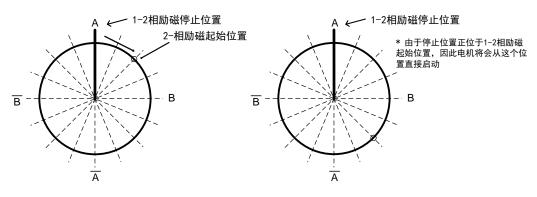
2. 置'0'时,恒压驱动输出 1~5 ch 将被置为 HiZ。

#### 2.2 Motor Sel

Motor Sel 用于选择电机驱动类型。

| D0 | 驱动类型      |
|----|-----------|
| 0  | 2相4线(初始态) |
| 1  | 4 相 5 线   |

#### 2.3 Mode


Mode 用于设置步进电机的工作模式。

| D0 | 驱动模式             |
|----|------------------|
| 0  | 2 相励磁   整步进(初始态) |
| 1  | 1-2 相励磁   1/2 步进 |

注: 1. 变更工作模式时,请勿将 Pulse 数设置为'0'。

2. 设置完 2-相 / 1-2 相 励磁模式之后,模式变化导致起始运行位置的变化如下:

| 设置前   | <b>→</b>      | 设置后   | 设置变化后的起始运行位置     |
|-------|---------------|-------|------------------|
| 1-2 相 | $\rightarrow$ | 1-2 相 | 从停止位置启动          |
| 1-2 相 | <b>→</b>      | 2-相   | 从停止起的下一个 2-相位置启动 |
| 2-相   | <b>→</b>      | 1-2 相 | 从停止位置启动          |
| 2-相   | <b>→</b>      | 2-相   | 从停止位置启动          |



当电机被设置为反转时(Rt=1),电机旋转方向与图中演示相反。



#### 2.4 MOTIONPLS

MOTIONPLS 用于选择 FLAG 端口的输出。

| D0 | FLAG 输出信号   |
|----|-------------|
| 0  | 运行状态指示(初始态) |
| 1  | PWM 输出      |

注: 1. 运行状态指示: 当 A/B 通道一组指令运行结束(电机停止),或是 A/B 通道的缓存器由寄存变空时(缓存被载入), FLAG管脚会输出一个脉宽 128/fclk 的脉冲信号,可用于通知主控。

示例: fclk = 24[MHz],则脉冲信号脉宽 = 128 / 24 = 5.3[μs]

- 2. PWM 输出: 若 PWM\_io 设置为'1',则 FLAG 管脚输出由 PWM\_Chop 和 PWM\_Duty 控制的 PWM 信号;若设置为'0',则 PWM 信号被应用于直流电机通道,FLAG 管脚输出恒'0'。
  - 3. fclk 为提供给主逻辑的时钟频率。

#### **2.5 STOP**

STOP 用于强制中断,使电机立即停止于当前细分下能够停留的位置。

| D0 | 电机状态             |
|----|------------------|
| 0  | 正常运行(初始态)        |
| 1  | 即停止于当前细分下能够停留的位置 |

STOP 置'1'后,Pulse 运行寄存器和缓存寄存器将被清零,Mode、Cycle、Rt、En 保持。

STOP 置 '1' 时,START 信号无效。当 STOP 置 '0' 后,直接发送 START 信号会使电机按原有设置运行。也可以重新发送 Mode、Cycle、Rt、En 等来更新设置,更新后的设置将在 START 信号发送后立即生效。

#### 2.6 Cycle

Cycle 用于设置电机运行的频率。

| D13 | D12 | D11 | D10   | D9   | D8    | D7    | D6    | D5    | D4    | D3   | D2 | D1 | D0 | 脉冲频率                   |
|-----|-----|-----|-------|------|-------|-------|-------|-------|-------|------|----|----|----|------------------------|
|     |     |     | 00_00 | 00_0 | 000_0 | 000 ~ | ,00_0 | 000_0 | 0001_ | 1111 |    |    |    | 禁用(初始态为全0)             |
| 0   | 0   | 0   | 0     | 0    | 0     | 0     | 0     | 1     | 0     | 0    | 0  | 0  | 0  | fclk / (32×4×32)pps    |
| 0   | 0   | 0   | 0     | 0    | 0     | 0     | 0     | 1     | 0     | 0    | 0  | 0  | 1  | fclk / (33×4×32)pps    |
| 0   | 0   | 0   | 0     | 0    | 0     | 0     | 0     | 1     | 0     | 0    | 0  | 1  | 0  | fclk / (34×4×32)pps    |
|     | ~   |     |       |      |       |       |       | ~     |       |      |    |    |    |                        |
| 1   | 1   | 1   | 1     | 1    | 1     | 1     | 1     | 1     | 1     | 1    | 1  | 1  | 0  | fclk / (16382×4×32)pps |
| 1   | 1   | 1   | 1     | 1    | 1     | 1     | 1     | 1     | 1     | 1    | 1  | 1  | 1  | fclk / (16383×4×32)pps |

- 注: 1. 指定的 Cycle 对 1-2 相和 2-相励磁模式均有效。
  - 2. 初始态仅在释放复位信号后存在,请勿将 Cycle 设置到禁用范围。
  - 3. fclk 为提供给主逻辑的时钟频率。



例:输入数据 = 14'b00\_0010\_1110\_1110, fclk = 24[MHz]

脉冲频率 = 24[MHz] / (750 × 4 × 32) = 250 [pps] = 31.25[Hz]

#### 2.7 En

En 用于驱动使能控制。

| D0 | 输出驱动状态  |
|----|---------|
| 0  | 关闭(初始态) |
| 1  | 开启      |

即使 En 被设置为'0',内部逻辑仍会运行,只是当前通道的输出变为 HiZ。

#### 2.8 Rt

Rt用于设置脉冲旋转方向。

| D0 | 方向          |
|----|-------------|
| 0  | CW (正转,初始态) |
| 1  | CCW (反转)    |

#### 2.9 Pulse

Pulse 用于设置步数。

|     | - diec / 1, 1, 2, 2, 2, 3, 5 |    |    |    |    |    |    |    |    |    |                  |
|-----|------------------------------|----|----|----|----|----|----|----|----|----|------------------|
| D10 | D9                           | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | 步数               |
| 0   | 0                            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0(初始态)           |
|     |                              |    |    |    |    |    |    |    |    |    | 1 (整步进)          |
| 0   | 0                            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0.5(1/2 步进)      |
|     |                              |    |    |    |    |    |    |    |    |    | 1023(整步进上限)      |
| 0   | 1                            | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 511.5(1/2 步进)    |
|     |                              |    |    |    |    |    |    |    |    |    | 1023(整步进)        |
| 1   | 1                            | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1023.5(1/2 步进上限) |

注: 1.励磁模式由 Mode 寄存器设置。

2. 步数 = Pulse 数 × 驱动模式步进数。整步进时 D10 无效。

示例: ModeA = 1 (1-2 相励磁, 1/2 步进), pulse = 11'b011\_1110\_1000, 步数 = 1000 × 1/2 = 500。

#### **2.10 START**

START 用于使能电机开始运行。

| D0 | 使能              |
|----|-----------------|
| 0  | 无 (初始态)         |
| 1  | A/B 对应通道运行(自清零) |

可视为 A/B 通道运行指令的启动脉冲,设置'1'后,经过一个 SCLK 会被重新置'0'。若电机当前已在运行,则将发送 START 命令时的设置(Pulse、Cycle 等)送入缓存。若此时 xSTOP 被置'1',则写入对应通道的 START 信号无效。



#### 2.11 PMW\_Chop

PMW\_Chop 用于设置 PWM 斩波频率。

| D1 | D0 | 斩波频率                     |
|----|----|--------------------------|
| 0  | 0  | fchop = fclk / 128 (初始态) |
| 0  | 1  | fchop = fclk / 256       |
| 1  | 0  | fchop = fclk / 512       |
| 1  | 1  | fchop = fclk / 1024      |

注: fclk 为提供给主逻辑的时钟频率。

## 2.12 DC\_Ct

DC\_Ct 用于设置直流电机驱动状态。

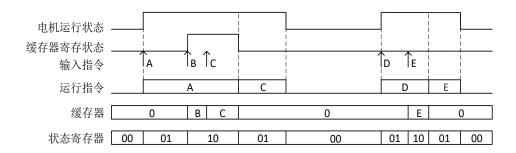
| D1 | D0 | 驱动状态     |  |  |
|----|----|----------|--|--|
| 0  | 0  | HiZ(初始态) |  |  |
| 0  | 1  | 正转       |  |  |
| 1  | 0  | 反转       |  |  |
| 1  | 1  | 刹车       |  |  |

## 2.13 PWM\_Duty

PWM\_Duty 用于设置 PWM 占空比。

| D6 | D5 | D4 | D3 | D2 | D1 | D0 | PWM 占空比          |
|----|----|----|----|----|----|----|------------------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1/128 ×100%(初始态) |
| 0  | 0  | 0  | 0  | 0  | 0  | 1  | 2/128×100%       |
| ~  |    |    |    |    |    | ~  |                  |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 128/128 ×100%    |

注: 相比数字处理精度,开启/关闭输出驱动通道的时间对 PWM 占空比的值有着更为重要的影响。为了避免这种情况,请务必谨慎设置占空比的值。


## 2.14 PWM\_io

PWM\_io 用于设置 FLAG 输出信号模式。

| D0 | FLAG 脚状态               |  |  |  |  |
|----|------------------------|--|--|--|--|
| 0  | 由 FLAG 引脚直接输出(初始态)     |  |  |  |  |
| 1  | 用于直流电机驱动,此时 FLAG 引脚不输出 |  |  |  |  |

#### 2.15 缓存功能

此大规模集成电路拥有 1 组 Cache 寄存器,可在电机正在运行时暂时寄存输入的指令,电机执行 完当前任务之后会接续被寄存的指令继续运行。



步进电机的运行指令(Mode、Cycle、Rt、Pulse)在 Pulse 寄存器所在地址(的数据)写入完成之后确定。当前指令运行时,再次输入的数据会暂存于 Cache 寄存器,在当前指令完成后被接续。Cache中已经寄存数据时仍可接收新输入的数据,新输入的数据会覆盖原有数据。

#### 3. 只读寄存器

可由 BH~EH 地址读取到的运行状态如下:

xch\_MS,细分模式: '0'-整步进, '1'-半步进;

x\_BUSY, 当前通道的缓存寄存器是否寄存了指令: '0'-无, '1'-已寄存;

OTP err, 芯片是否过温保护: '0'-正常, '1'-过温保护;

xWORK, 当前通道的电机是否在运行: '0'-停止, '1'-运行中;

xch Steps,单方向累计运行的半步数,如果当前通道转向变换则清零,记满则保持最大计数。

## 4. 内置时钟

可由 useInnerOSC 配置使用外部或内部时钟。

| D0 | 时钟源              |  |  |
|----|------------------|--|--|
| 0  | 由 FCLK 引脚输入(初始态) |  |  |
| 1  | 使用内置 24.5MHz 时钟  |  |  |

使用内部时钟时, FCLK 接 GND。

## 时序表1

输入: V<sub>IO</sub>=3.3V, V<sub>AVDD</sub> = 5V, C<sub>L</sub> = 20pF

| 参数                 | 符号                | 最小值 | 最大值 | 单位  |
|--------------------|-------------------|-----|-----|-----|
| SCL 时钟频率           | $f_{scl}$         |     | 400 | kHz |
| RST上升沿到起始          | t <sub>irs</sub>  | 500 |     | μs  |
| 转换期间总线空闲时间         | t <sub>buf</sub>  | 4.7 |     | μs  |
| 起始条件保持时间(第一个时钟脉冲前) | t <sub>hdst</sub> | 4.0 |     | μs  |
| 时钟低电平时间            | t <sub>low</sub>  | 4.7 |     | μs  |



| 参数                            | 符号                               | 最小值 | 最大值  | 单位 |
|-------------------------------|----------------------------------|-----|------|----|
| 时钟高电平时间                       | thigh                            | 4.0 |      | μs |
| 重复起始条件的建立时间                   | t <sub>sust</sub>                | 4.7 |      | μs |
| SCL 下降沿到 SDA 的保持时间(注)         | t <sub>hdd</sub>                 | 10  |      | ns |
| SDA 到 SCL 上升沿的建立时间            | t <sub>sud</sub>                 | 250 |      | ns |
| SCL 和 SDA 的上升时间               | t <sub>rc</sub> ,t <sub>rd</sub> |     | 1000 | ns |
| SCL 和 SDA 的下降时间               | t <sub>fc</sub> ,t <sub>fd</sub> |     | 300  | ns |
| 结束条件的建立时间                     | t <sub>susp</sub>                | 4.7 |      | μs |
| SCL 下降沿到应答的延时 @SDA 上拉电阻 4.7kΩ | t <sub>ack</sub>                 | 120 | 1000 | ns |

注:数据必须保持足够的时间来桥接 SCL 上的转换时间 tfc。

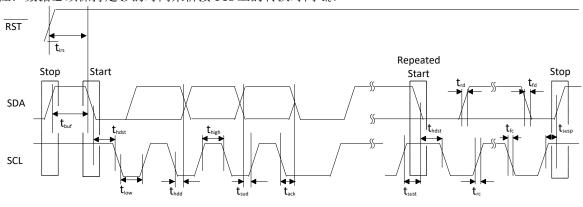
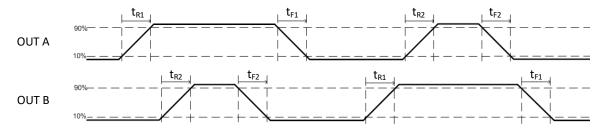
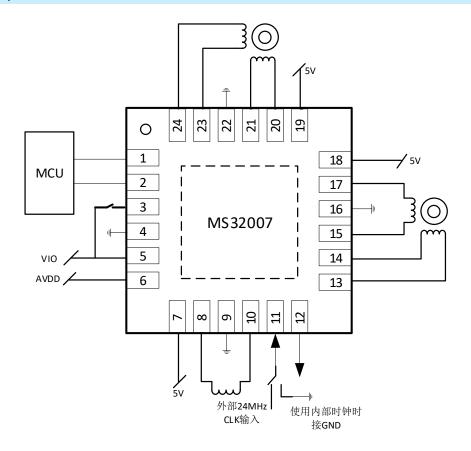




图 6. I2C 模式时序


# 时序表 2

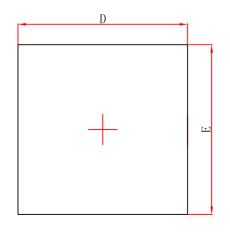
默认测试条件为室温 25°C, $V_{IO}$  = 3.3V, $V_{AVDD}$ =5V, $V_{MVCC}$  = 5V,负载电阻  $16\Omega$ 。

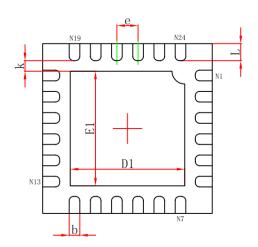
| 参数     | 符号              | 规格        |
|--------|-----------------|-----------|
|        | <1 ~ 5c         | h 恒压输出模块> |
| 上升时间1  | t <sub>R1</sub> | 0.4μs     |
| 上升时间 2 | t <sub>R2</sub> | 0.4μs     |
| 下降时间1  | t <sub>F1</sub> | 0.01μs    |
| 下降时间 2 | t <sub>F2</sub> | 0.01μs    |

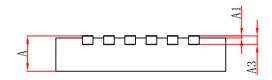


# 典型应用图




注: 1. MS32007 具有背部散热片,大功率应用时必须接地。


2. 所有的电压电路范围不要超过极限值。




# 封装外形图

# QFNWB4X4-24L(P0.50T0.75/0.85)







|    | T           |                   | 1           |             |  |  |
|----|-------------|-------------------|-------------|-------------|--|--|
|    | 尺寸(         | 毫米)               | 尺寸(英寸)      |             |  |  |
| 符号 | 最小值         | 最大值               | 最小值         | 最大值         |  |  |
| А  | 0.700/0.800 |                   | 0.028/0.031 | 0.031/0.035 |  |  |
| A1 | 0.000       | 0.000 0.050 0.000 |             | 0.002       |  |  |
| А3 | 0.203       | BREF.             | 0.008REF.   |             |  |  |
| D  | 3.900       | 4.100             | 0.154       | 0.161       |  |  |
| E  | 3.900       | 4.100             | 0.154       | 0.161       |  |  |
| D1 | 2.600       | 2.800             | 0.102       | 0.110       |  |  |
| E1 | 2.600       | 2.800             | 0.102       | 0.110       |  |  |
| k  | 0.200       | MIN.              | 0.008MIN.   |             |  |  |
| b  | 0.180       | 0.300             | 0.007       | 0.012       |  |  |
| е  | 0.500       | OTYP.             | 0.020       |             |  |  |
| L  | 0.300       | 0.500             | 0.012       | 0.020       |  |  |

# 印章与包装规范

1. 印章内容介绍



MS32007

产品型号: MS32007 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

| 型号      | 封装形式  | 只/卷  | 卷/盒 | 只/盒  | 盒/箱 | 只/箱   |
|---------|-------|------|-----|------|-----|-------|
| MS32007 | QFN24 | 4000 | 1   | 4000 | 8   | 32000 |



# 声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!





## MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。



+86-571-89966911



杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室



http://www.relmon.com